Current Issue : January-March Volume : 2024 Issue Number : 1 Articles : 5 Articles
Heterogeneous network (HetNet) is considered to be the most promising approach for increasing communication capacity. However, HetNet control problems are difficult due to their intertier interference. Recently, the enhanced intercell interference coordination (eICIC) technology is introduced to offer several benefits, including a more equitable traffic load distribution across the macro and embedded small cells. In this paper, we design a new resource allocation scheme for the eICIC-based HetNet. Our proposed scheme is formulated as a joint cooperative game to handle conflicting requirements. By adopting the ideas of Kalai and Smorodinsky solution (KSS), multicriteria Kalai and Smorodinsky solution (MCKSS), and sequential Raiffa solution (SRS), we develop a hybrid control algorithm for an adaptive resource sharing between different base stations. To effectively adjust the eICIC fraction rates, the concepts of MCKSS and SRS are applied in an interactive manner. For mobile devices in the HetNet, the assigned resource is distributed by using the idea of KSS. The key insight of our algorithm is to translate the originally competitive problem into a hierarchical cooperative problem to reach a socially optimal outcome. The main novelty of our approach is its flexibility to reach a reciprocal consensus under dynamic HetNet environments. Exhaustive system simulations illustrate the performance gains along different dimensions, such as system throughput, device payoff, and fairness among devices. The superiority of our proposed scheme is fully demonstrated in comparison with three other existing eICIC control protocols....
This paper presents a wideband cavity-backed slot antenna array designed for X-band wireless communication systems. The antenna element consists of a circular slot combined with a cross-slotted patch; both are fed by an L-shaped microstrip line through proximity coupling to extend the impedance bandwidth and gain. The reduction of beam squint in the radiation patterns, caused by the asymmetric feed line, is achieved through intelligent optimization of the dimensions and position of the cross slot on the patch. Additionally, a back cavity is included to provide unidirectional radiation and enhance gain. The antenna exhibits right-hand circularly polarized (RHCP) radiation patterns with high gain over a wideband frequency range. To further improve the axial ratio (AR) bandwidth and gain, the antenna is utilized in a 2 × 2 array configuration with a sequential rotation feed network. The overall dimensions of the proposed array are 1 42λ0 × 1 42λ0 × 0 45λ0, where λ0 represents the wavelength at the center frequency of 10 GHz. The fabricated array is then tested, and the measurements show an impedance bandwidth of 60% (7 GHz-13 GHz) with S11 < −10 dB, a 3 dB AR bandwidth of 42% (7.45-11.65 GHz), and a peak gain of 11.14 dB. The simulated and measured results exhibit good agreement, validating the effectiveness of the design....
6LoWPAN allows IEEE 802.15.4 standard-based wireless sensor networks (WSNs) to be connected to the Internet through the Internet protocol IPv6; however, its performance decreases as the network grows in size due to complications such as the bottleneck problem; therefore this paper aims to improve the performance of 6LoWPAN-based WSNs by using the IEEE 802.11AH standard as a backbone in these networks, since this emerging new technology is suitable for IoT applications, as it can provide a coverage range up to 1,000m and data transmission rates up to 78 Mbps. The IEEE 802.11AH standard can be used as a backbone by utilizing its characteristics to improve some of the performance parameters of the 6LoWPAN networks such as end-to-end delay, frames delivery ratio, and the network throughput. This paper proposes a heterogeneous network infrastructure consisting of 6LoWPAN and the IEEE 802.11AH standard to enable bidirectional data transmission between the network components and the Internet via the Internet protocol IPv6 with two types of gateways, the edge gateways to connect the entire network to the Internet and the intermediate gateways to connect the 6LoWPAN clusters to the edge gateways. The simulation results demonstrate that the heterogeneous network approach can provide significant improvement gains compared to the 6LoWPAN homogeneous networks, since it shows clear improvements to the packets delivery ratio, the end-to-end delay mean value and the network throughput, subsequently leading to a distinct enhancement in the network’s overall reliability....
In this paper, we aim to progress the efficiency and accuracy of information processing and security detection in computer networks by introducing convolutional neural networks in machine learning algorithms that are capable of multi-scaling from the channel attention module and spatial attention module in extracting image information. Global maximum pooling and global averaging are done for the feature maps generated by both modules to get the clearest feature maps by dimensionality reduction. The loss function is used to calculate the feature maps to reduce the data loss generated during data extraction and finally complete the image data processing. To verify the effectiveness of the proposed platform, network images containing different amounts of data are input into the platform, and the accuracy and loss of data extraction are obtained. The results show that the data extraction accuracy of the reduced platform is up to 100%, which is 6% higher than other platforms. The number of data losses in other platforms is more than twice of this paper, while the number of losses in this paper can be controlled within 5. It can be seen that convolutional neural network in machine learning improves the accuracy of data extraction from computer network information images and reduces the loss in data extraction....
Backscatter communication (BC) systems are a promising technology for internet of things (IoT) applications that allow devices to transmit information by modulating ambient radio signals without the need for a dedicated power source. However, the security of BC systems is a critical concern due to the vulnerability of the wireless channel. This paper investigates the impact of side information (SI) on the secrecy performance of BC systems. SI mainly refers to the additional knowledge that is available to the communicating parties beyond transmitted data, which can be used to enhance reliability, efficiency, security, and quality of service in various communication systems. In particular, in this paper, by considering a non-causally known SI at the transmitter, we derive compact analytical expressions of average secrecy capacity (ASC) and secrecy outage probability (SOP) for the proposed system model to analyze how SI affects the secrecy performance of BC systems. Moreover, a Monte Carlo simulation validates the accuracy of our analytical results and reveals that considering such knowledge at the transmitter has constructive effects on the system performance and ensures reliable communication with higher rates than the conventional BC systems without SI, namely, lower SOP and higher ASC are achievable....
Loading....